TB SENSOR

[menuju akhir]

1. Tujuan [kembali]

  • Mempelajari carakerja sensor
  • Mempelajari prinsip kerja pengolahan limbah cair pada industri kimia, menggunakan water level sensor, turbidity sensor, Ph sensor, sensor suhu, sensor gas, tss sensor, flow sensor, oksigen sensor.
  • Mempelajari simulasi rangkaian pengolahan limbah cair pada industri kimia, menggunakan water level sensor, turbidity sensor, Ph sensor, sensor suhu, sensor gas, tss sensor, flow sensor, oksigen sensor.

2. Alat dan Bahan [kembali]

   1. Voltmeter

DC Voltemeter merupakan alat ukur yang digunakan untuk mnegukur tegangan DC. 

2. Baterai

     Digunakan sebagai sumber tegangan pada rangkaian.
  Konfigurasi pin

     Spesifikasi

1. Resistor

Spesifikasi resistor yang digunakan:

a. Resistor 10 ohm

b. Resistor 220 ohm

c. Resistor 10k ohm


            Datasheet resistor

 

2. Logic State

     


3. Transistor NPN


                Transistor NPN merupakan jenis transistor bipolar yang menggunakan arus listrik kecil dan tegangan positif pada terminal Basis untuk mengendalikan aliran arus dan tegangan yang lebih besar dari Kolektor ke Emitor. Komponen ini berfungsi sebagai penguat, pemutus dan penyambung (switching), stabilitasi tegangan, modulasi sinyal, dan lain lain. 

    Spesifikasi dan konfigurasi pin:

Spesifikasi

4. Relay


Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. 

Spesifikasi tipe relay: 5VDC-SL-C
Tegangan coil: DC 5V
Struktur: Sealed type
Sensitivitas coil: 0.36W
Tahanan coil: 60-70 ohm
Kapasitas contact: 10A/250VAC, 10A/125VAC, 10A/30VDC, 10A/28VDC
Ukuran: 196154155 mm
Jumlah pin: 5

Konfigurasi Pin

 Datasheet Relay


5. Dioda




Dioda adalah komponen aktif dua kutub yang pada umumnya bersifat semikonduktor, yang memperbolehkan arus listrik mengalir ke satu arah (kondisi panjar maju) dan menghambat arus dari arah sebaliknya (kondisi panjar mundur).

6. LED
                         
 

7. OP-AMP


Operational Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas.

 


8. Motor DC


Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. 
Konfigurasi Pin

 Pin 1 : Terminal 1

 Pin 2 : Terminal 2

                Spesifikasi Motor DC


  9. Buzzer

Buzzer Features and Specifications

  • Rated Voltage: 6V DC
  • Operating Voltage: 4-8V DC
  • Rated current: <30mA
  • Sound Type: Continuous Beep
  • Resonant Frequency: ~2300 Hz 
  • Small and neat sealed package
  • Breadboard and Perf board friendly
 10.  Switch 

Features 
β€’ Constant ON resistance for signals Β±10V and 100 kHz connection diagram
 β€’ tOFF < tON. break before make action
 β€’ Open switch isolation at 1.0 MHz -50 dB
 β€’ < 1.0 nA leakage in OFF state β€’ TTL. DTL. RTL direct drive compatibility
 β€’ Single disable pin turns all sWitches in package OFF  


11. POWER SUPPLY

    Berfungsi sebagai sumber daya bagi sensor ataupun rangkaian. Spesifikasi :
    Input voltage: 5V-12V
    Output voltage: 5V
    Output Current: MAX 3A
    Output power:15W
    conversion efficiency: 96%

12. 7 Segment Anoda

A. Spesifikasi

  • Available in two modes Common Cathode (CC) and Common Anode (CA)
  • Available in many different sizes like 9.14mm,14.20mm,20.40mm,38.10mm,57.0mm and 100mm (Commonly used/available size is 14.20mm)
  • Available colours: White, Blue, Red, Yellow and Green (Res is commonly used)
  • Low current operation
  • Better, brighter and larger display than conventional LCD displays.
  • Current consumption : 30mA / segment
  • Peak current : 70mA

B. Konfigurasi pin

Pin Number

Pin Name

Description

1

e

Controls the left bottom LED of the 7-segment display

2

d

Controls the bottom most LED of the 7-segment display

3

Com

Connected to Ground/Vcc based on type of display

4

c

Controls the right bottom LED of the 7-segment display

5

DP

Controls the decimal point LED of the 7-segment display

6

b

Controls the top right LED of the 7-segment display

7

a

Controls the top most LED of the 7-segment display

8

Com

Connected to Ground/Vcc based on type of display

9

f

Controls the top left LED of the 7-segment display

10

g

Controls the middle LED of the 7-segment display

13. Decoder (IC 7447)

A. Spesifikasi

  • has a broader Voltage range
  • A variety of operating conditions
  • internal pull-ups ensure you don't need external resistors
  • Four input lines and seven output lines
  • input clamp diode hence no need for high-speed termination
  • comes with open collector output 

B. Konfigurasi pin:

Data Sheet Decoder:

14. Encoder  (IC 74147)


A. Spesifikasi

  • It operates at 4.5V to 5.5 DC voltage.
  • It delivers output current from low 70Β΅A to high 8mA
  • It operates at the temperature from -55℃ to 70℃
  • Logic Case packaging type: DIP
  • Mounting Type: Through Hole

B. Konfigurasi Pin

IC 74147 Pin Diagram, pin diagram of IC 74147



You can see there is a total of 16 pins.
  • Pin No. 1 - 4 (input)
  • Pin No. 2 - 5 (input)
  • Pin No. 3 - 6 (input)
  • Pin No. 4 - 7 (input)
  • Pin No. 5 - 8 (input)
  • Pin No. 6 - C (output)
  • Pin No. 7 - B (output)
  • Pin No. 8 - Ground (GND)
  • Pin No. 9 - A (output)
  • Pin No. 10 - 9 (input)
  • Pin No. 11 - 1 (input)
  • Pin No. 12 - 2 (input)
  • Pin No. 13 - 3 (input)
  • Pin No. 14 - D (output)
  • Pin No. 15 - Not Connected (NC)
  • Pin No. 16 - Vcc or positive power supply

15.  POT- HG


A. Spesifikasi
  • Type: Rotary a.k.a Radio POT
  • Available in different resistance values like 500Ω, 1K, 2K, 5K, 10K, 22K, 47K, 50K, 100K, 220K, 470K, 500K, 1 M. 
  • Power Rating: 0.3W
  • Maximum Input Voltage: 200Vdc
  • Rotational Life: 2000K cycles

B. Konfigurasi PIN

Pin No.

Pin Name

Description

1

Fixed End

This end is connected to one end of the resistive track

2

Variable End

This end is connected to the wiper, to provide variable voltage

3

Fixed End

This end is connected to another end of the resistive track

                 Konfigurasi potentiometer:


16. Sensor Touch

        Sensor merupakan sebuah modul sensor yang berfungsi seperti tombol/saklar, namun cara penggunaanya hanya perlu dengan menyentuhnya menggunakan jari kita.

Sensor sentuh mendeteksi sentuhan atau jarak dekat tanpa bergantung pada kontak fisik. Sensor sentuh mulai digunakan di banyak aplikasi seperti ponsel, remote control, panel kontrol, dll. Sensor sentuh saat ini dapat menggantikan tombol dan sakelar mekanis.

Sensor sentuh dengan penggeser rotasi sederhana, bantalan sentuh, dan roda putar menawarkan keuntungan signifikan untuk antarmuka pengguna yang lebih intuitif. Sensor sentuh lebih nyaman dan andal untuk digunakan tanpa bagian yang bergerak. Penggunaan sensor sentuh memberikan kebebasan besar bagi perancang sistem dan membantu mengurangi biaya keseluruhan sistem. Tampilan sistem secara keseluruhan bisa lebih menarik dan kontemporer.

prinsip Kerja

Sensor sentuh juga disebut sebagai sensor taktil dan sensitif terhadap sentuhan, gaya, atau tekanan. Mereka adalah salah satu sensor yang paling sederhana dan berguna. Cara kerja sensor sentuh mirip dengan saklar sederhana.

Ketika terjadi kontak dengan permukaan sensor sentuh, maka rangkaian di dalam sensor tertutup dan terjadilah aliran arus. Ketika kontak dilepaskan, rangkaian terbuka dan tidak ada arus yang mengalir.

Representasi gambar cara kerja sensor sentuh ditunjukkan di bawah ini.



KEMBALI KE ATAS

Sensor Sentuh Kapasitif

Sensor sentuh kapasitif banyak digunakan di sebagian besar perangkat portabel seperti ponsel dan pemutar MP3. Sensor sentuh kapasitif dapat ditemukan bahkan pada peralatan rumah tangga, otomotif, dan aplikasi industri. Alasan pengembangan ini adalah daya tahan, ketahanan, desain produk yang menarik, dan biaya.

Sensor sentuh, tidak seperti perangkat mekanis, tidak mengandung bagian yang bergerak. Oleh karena itu, perangkat ini lebih tahan lama dibandingkan perangkat input mekanis. Sensor sentuh kuat karena tidak ada celah untuk masuknya kelembapan dan debu.

Prinsip sensor sentuh kapasitif dijelaskan di bawah ini.

Bentuk kapasitor yang paling sederhana dapat dibuat dengan dua konduktor yang dipisahkan oleh isolator. Pelat logam dapat dianggap sebagai konduktor. Rumus kapasitansi ditunjukkan di bawah ini.

C = Ξ΅0 * Ξ΅r * A / hari

 

Ξ΅0 =  adalah permitivitas ruang kosong

Ξ΅r =  adalah permitivitas relatif atau konstanta dielektrikr

A =  adalah luas lempeng dan d adalah jarak antara kedua lempeng tersebut.

Kapasitansi berbanding lurus dengan luas dan berbanding terbalik dengan jarak..

Dalam sensor sentuh kapasitif, elektroda mewakili salah satu pelat kapasitor. Pelat kedua diwakili oleh dua benda: satu adalah lingkungan elektroda sensor yang membentuk kapasitor parasit C0 dan yang lainnya adalah benda konduktif seperti jari manusia yang membentuk kapasitor sentuh CT.

Elektroda sensor dihubungkan ke rangkaian pengukuran dan kapasitansi diukur secara berkala. Kapasitansi keluaran akan meningkat jika suatu benda konduktif menyentuh atau mendekati elektroda sensor. Rangkaian pengukuran akan mendeteksi perubahan kapasitansi dan mengubahnya menjadi sinyal pemicu.

Cara kerja sensor sentuh kapasitif ditunjukkan pada gambar di bawah ini.



Jika luas elektroda sensor lebih besar dan ketebalan bahan penutup lebih kecil, maka kapasitansi sentuh CT juga besar. Akibatnya, perbedaan kapasitansi antara panel sentuh dan panel sensor yang tidak disentuh juga besar. Artinya, ukuran elektroda sensor dan bahan penutup akan mempengaruhi sensitivitas sensor.T

Pengukuran kapasitansi digunakan dalam banyak aplikasi seperti menentukan jarak, tekanan, akselerasi, dll. Sensor Sentuh Kapasitif adalah bidang aplikasi lainnya. Ada banyak metode untuk mengukur kapasitansi. Beberapa di antaranya adalah: modulasi amplitudo, modulasi frekuensi, pengukuran waktu tunda, siklus kerja, dll.

Dalam kasus sensor sentuh kapasitif, keberadaan bahan konduktif sudah cukup untuk memicu beban dan tidak memerlukan tenaga apa pun. Oleh karena itu, risiko pemicu yang salah atau tidak diinginkan lebih tinggi jika menggunakan sensor sentuh kapasitif. Masalah ini lebih besar jika terdapat uap air atau air, yang merupakan konduktor yang baik.

Metode pengukuran kapasitansi pada sensor sentuh memerlukan bidang referensi yang terletak di dekat bantalan penginderaan. Dalam sensor sentuh kapasitif, perjalanan jari membentuk kapasitansi antara elektroda penginderaan dan bidang referensi. Minyak kulit atau keringat dari tubuh manusia dapat menyebabkan pemicu yang salah.

Untuk membedakan antara sentuhan yang disengaja dan yang salah, bantalan penginderaan tambahan atau algoritma perangkat lunak digunakan. Solusi terbaik adalah dengan menghilangkan elektroda ground referensi.

Ada dua jenis sensor sentuh kapasitif: penginderaan kapasitif permukaan dan penginderaan kapasitif yang diproyeksikan.

Dalam penginderaan kapasitif permukaan, isolator diaplikasikan dengan lapisan konduktif pada satu sisi permukaannya. Di atas lapisan konduktif ini, lapisan isolator tipis diterapkan. Arus diterapkan ke seluruh sudut lapisan konduktif.

Ketika konduktor eksternal seperti jari manusia bersentuhan dengan permukaan, kapasitansi terbentuk di antara konduktor tersebut dan menarik lebih banyak arus dari sudut-sudutnya. Arus pada setiap sudut diukur dan perbandingannya akan menentukan posisi sentuhan pada permukaan.

Dalam penginderaan kapasitif yang diproyeksikan, seluruh permukaan tidak diisi, tetapi jaringan bahan konduktif X – Y ditempatkan di antara dua bahan isolasi. Grid sering kali terbuat dari Tembaga atau Emas pada PCB atau Indium Tin Oxide pada kaca. IC digunakan untuk mengisi daya dan memantau jaringan.

Ketika muatan ditarik oleh benda konduktif eksternal seperti jari dari suatu area pada grid, IC menghitung lokasi jari pada permukaan sentuh. Sensor sentuh yang terbuat dari teknologi kapasitif proyektif dapat digunakan untuk merasakan jari yang tidak menyentuh permukaannya. Mereka bertindak sebagai sensor jarak dekat.

KEMBALI KE ATAS

Sensor Sentuh Resistif

Sensor sentuh resistif digunakan lebih lama dibandingkan solusi kapasitif karena merupakan rangkaian kontrol sederhana. Sensor sentuh resistif tidak bergantung pada sifat listrik kapasitansi. Oleh karena itu, sensor sentuh resistif dapat mengakomodasi bahan non-konduktif seperti stylus dan jari yang terbungkus sarung tangan.

Berbeda dengan sensor sentuh kapasitif yang mengukur kapasitansi, sensor sentuh resistif merasakan tekanan pada permukaan.

Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh titik pengatur jarak kecil. Lapisan bawah terbuat dari kaca atau film dan lapisan atas terbuat dari film. Bahan konduktif dilapisi dengan film logam umumnya Indium Tin Oxide dan bersifat transparan. Tegangan diterapkan pada permukaan konduktor.

Ketika probe apa pun seperti jari, pena stylus, pena, dll. digunakan untuk memberikan tekanan pada lapisan atas sensor, sensor akan diaktifkan. Ketika tekanan yang cukup diterapkan, film bagian atas tertekuk ke dalam dan bersentuhan dengan film bagian bawah. Hal ini mengakibatkan penurunan tegangan dan titik kontak menciptakan jaringan pembagi tegangan dalam arah X – Y.

Tegangan ini dan perubahan tegangannya dideteksi oleh pengontrol dan menghitung posisi sentuhan di mana tekanan diterapkan berdasarkan koordinat X – Y dari sentuhan tersebut.

Cara kerja sensor sentuh resistif dapat dijelaskan pada gambar berikut.



Hambatan benda yang menyentuh elektroda akan terlihat pada cara kerja sensor sentuh resistif. Misalnya, ketika jari menyentuh permukaan, hambatan kecil pada jari memungkinkan sejumlah arus mengalir melaluinya, menyelesaikan suatu rangkaian. Transistor bertindak sebagai saklar. Resistor Rp digunakan untuk melindungi transistor dari kemungkinan korsleting pada elektroda. Resistor Rb digunakan untuk menjaga alas tetap di tanah ketika rangkaian terbuka, yaitu tidak ada jari.

Ketika kedua elektroda disentuh, arus kecil mengalir melalui jari dan transistor ON, akibatnya beban menjadi aktif.

Rangkaian sensitif sentuhan resistif sederhana ditunjukkan di bawah ini.



Ini terdiri dari dua elektroda, dua transistor yang dihubungkan dalam konfigurasi Darlington, sebuah resistor dan sebuah LED. Ketika jari diletakkan pada elektroda, rangkaian selesai dan terjadi amplifikasi arus. Resistor digunakan untuk membatasi jumlah arus ke LED.

Ada tiga jenis sensor sentuh resistif: 4 – kawat, 5 – kawat dan 8 – kawat.

4 – Sensor sentuh resistif kawat paling hemat biaya. 5 – Sensor sentuh resistif kawat paling tahan lama. Mirip dengan sensor 4 kawat, hanya saja semua elektroda jenis ini berada di lapisan bawah. Lapisan atas dalam sensor 5 kawat bertindak sebagai probe pengukur tegangan. Karena jenis konstruksi ini, sensor sentuh resistif 5 kawat memungkinkan jumlah aktuasi yang lebih tinggi.

Dalam sensor sentuh resistif 8 kabel, setiap tepi sensor menyediakan garis penginderaan. Garis penginderaan ini bertindak sebagai gradien tegangan stabil untuk pengontrol sentuh. Level tegangan dasar sebenarnya pada area sentuh dilaporkan oleh jalur penginderaan ini ke pengontrol. Ini adalah jenis sensor sentuh resistif yang paling akurat.

Benda apa pun seperti jari, stylus, pena, jari bersarung tangan, dll. digunakan untuk memberikan tekanan pada sensor sentuh resistif, sebagian besar digunakan di lingkungan yang keras. Namun waktu respons sensor sentuh resistif lebih kecil dibandingkan sensor sentuh kapasitif. Oleh karena itu, sensor sentuh kapasitif secara perlahan menggantikannya.


Pin Out
Spesifikasi













grafik touch sensor

blog diagram touch sensor




17.  IC 74HC147

         


    IC encoder 74147 merupakan IC dalam keluarga TTL yang bekerja dengan tegangan sumber +5 volt DC. IC 74147 memiliki 16 pin dengan kemasan IC DIP. Encoder IC 74147 memiliki 9 jalur input desimal 1 sampai 9 aktif LOW dan 4 jalur output BCD aktif LOW. Tegangan sumber untuk IC 74147 diberikan melalui pin Vcc (+5 volt DC) dan pin GND (ground).

18 Water Sensor
    Water sensor adalah controller yang bisa mendeteksi volume air, tinggi air, serta kualitas air di dalam tangki, sungai, danau, dan sejenisnya dengan akurat dan mudah. Sensor ini merupakan perangkat yang bisa mematikan atau mengobarkan pompa air secara otomatis andai air mulai berakhir atau sudah nyaris penuh.

Jumlah Pin pada Sensor ini berjumlah 3 Yaitu :

  1. Pin Negatif (-)
  2. Pin Positif (+)
  3. Pin Data (S).

Water Level Sensor adalah alat yang digunakan untuk memberikan signal kepada alarm / automation panel bahwa permukaan air telah mencapai level tertentu. Sensor akan memberikan signal dry contact (NO/NC) ke panel. Detector ini bermanfaat untuk memberikan alert atau untuk menggerakkan perangkat automation lainnya. Water sensor ini telah dilengkapi dengan built-in buzzer yang berbunyi pada saat terjadi trigger. Sensor ketinggian air biasanya digunakan untuk menghitung ketinggian air di sungai, danau, atau tangki air. Sensor ini sangat mudah untuk dibuat karena bahan - bahanya sederhana.

Cara Kerja Sensor

Water level merupakan sensor yang berfungsi untuk mendeteksi ketinggian air dengan output analog kemudian diolah menggunakan mikrokontroler. Cara kerja sensor ini adalah pembacaan resistansi yang dihasilkan air yang mengenai garis lempengan pada sensor. Cara kerja sensor ini adalah pembacaan resistansi yang dihasilkan air yang mengenai garis lempengan pada sensor. Semakin banyak air yang mengenai lempengan tersebut, maka nilai resistansinya akan semakin kecil dan sebaliknya. Sensor memiliki sepuluh jejak tembaga yang terbuka, lima di antaranya adalah jejak daya dan lima lainnya adalah jejak indera. Jejak-jejak ini terjalin sehingga ada satu jejak indera di antara setiap dua jejak kekuatan. Biasanya, jejak kekuatan dan indera tidak terhubung, tetapi ketika direndam dalam air, keduanya dijembatani. Pengoperasian sensor ketinggian air cukup sederhana. Jejak daya dan indra membentuk resistor variabel (seperti potensiometer) yang resistansinya bervariasi berdasarkan seberapa banyak mereka terpapar air.

Grafik Water Level Sensor

Pengoperasian sensor ketinggian air cukup sederhana.
Jejak daya dan indra membentuk resistor variabel (seperti potensiometer) yang resistansinya bervariasi berdasarkan seberapa banyak mereka terpapar air.


Resistensi ini berbanding terbalik dengan kedalaman pencelupan sensor dalam air : Semakin banyak air yang dibenamkan sensor, semakin baik konduktivitasnya dan semakin rendah resistansinya. Semakin sedikit air yang dibenamkan sensor, semakin buruk konduktivitasnya dan semakin tinggi resistansinya. Sensor menghasilkan tegangan output yang sebanding dengan resistansi; dengan mengukur tegangan ini, ketinggian air dapat ditentukan.

Blog Diagram




19 Sensor SUHU (LM 35)


Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor. LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain, LM35 juga mempunyai keluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kendali khusus serta tidak memerlukan penyetelan lanjutan.

LM35 adalah sensor suhu linier analog yang tegangan keluarannya bervariasi secara linier dengan perubahan suhu. LM35 adalah sensor suhu linier tiga terminal dari semikonduktor Nasional. Sensor ini dapat mengukur suhu dari -55 derajat celcius hingga +150 derajat celcius. Output tegangan dari LM35 meningkat 10mV per derajat Celcius kenaikan suhu. LM35 dapat dioperasikan dari catu daya 5V dan arus siaga kurang dari 60uA. Pin keluar dari LM35 ditunjukkan pada gambar di bawah ini.

 

Prinsip Kejra

Sensor suhu merupakan perangkat pengukur suhu yang umumnya menggunakan prinsip kerja termokopel. Termokopel adalah suatu rangkaian yang terdiri dari dua logam dengan koefisien muai panjang yang berbeda, dihubungkan pada ujung-ujungnya. Saat terdapat perbedaan suhu di kedua titik hubung logam tersebut, terjadi beda potensial yang menghasilkan arus listrik. Prinsip ini dimanfaatkan dalam sensor suhu untuk mengukur suhu pada berbagai kondisi, baik tinggi maupun rendah.


Dalam kalibrasi sensor suhu, logam A dan logam B sebagai bahan termokopel disambungkan, dengan ujung yang satu ditempatkan pada suhu dingin dan ujung lainnya pada suhu panas. Tegangan yang dihasilkan setara dengan suhu yang terukur, memungkinkan penggunaan sensor suhu ini dalam industri untuk mengukur suhu ekstrem. Keuntungan utama termokopel adalah kemampuannya mengukur suhu tinggi dan rendah.


Prinsip kerja sensor suhu dapat dijelaskan melalui pemuaian logam saat dipanaskan, yang mempengaruhi pergerakan atom atau elektron. Logam dengan kecepatan muai yang berbeda menyebabkan beda potensial dan timbulnya tegangan listrik. Sensor suhu, khususnya termokopel, sering digunakan sebagai termometer digital karena menghasilkan output berupa arus listrik yang dapat dikonversi secara digital.


Sensor suhu dapat dihubungkan secara seri untuk membentuk termopile, meningkatkan tegangan dan memungkinkan penggunaan pada tegangan yang lebih tinggi. Meskipun sensor suhu mengukur perbedaan suhu, bukan suhu absolut, penggunaan sambungan dingin tiruan membantu mengurangi gradiasi suhu di antara ujung-ujungnya.



Dalam kesimpulan, sensor suhu, terutama yang berbasis termokopel, memiliki peran penting dalam pengukuran suhu di berbagai aplikasi. Kemampuannya untuk mengatasi suhu ekstrem membuatnya sangat berguna dalam industri dan laboratorium. Meskipun memiliki kelemahan, seperti gradiasi suhu, penggunaan teknik seperti sambungan dingin tiruan membantu meningkatkan akurasi pengukuran.

Sensor suhu NTC Thermistor adalah resistor yang sensitiv secara temial dimana tahanannya akan menurun dengan kenaikan suhu lingkungannya. Sensor ini mempunyai dimensi kecil, murah dan akurat namun menunjukkan ketidak linearan yang tinggi sehingga memerlukan kalibrasi untuk memperoleh akurasi yang moderat. Umumnya sensor NTC terbuat dari keramik elektronik seperti Barium Titanat sehingga memiliki koefisien suhu dari tahanan yang sangat besar. Jika tahanan temnistor terukur pada suhu

referensi To disebut Ro maka perubahan penurunan eksponensiai dari suhu sebagai fungsi dari suhu lingkungan T dapat dinyatakan sebagai (Portland, 2003).





Dalam praktiknya proses antarmuka sensor LM35 dapat dikatakan sangat mudah. Pada IC sensor LM35 ini terdapat tiga buah pin kaki yakni Vs, Vout dan pin ground. Dalam pengoperasiannya pin Vs dihubungkan dengan tegangan sumber sebesar antara 4 – 20 volt sementara pin Ground dihubungkan dengan ground dan pin Vout merupakan keluaran yang akan mengalirkan tegangan yang besarnya akan sesuai dengan suhu yang diterimanya dari sekitar.

Prinsip kerja alat pengukur suhu ini, adalah sensor suhu difungsikan untuk mengubah besaran suhu menjadi tegangan, dengan kata lain panas yang ditangkap oleh LM35 sebagai sensor suhu akan diubah menjadi tegangan.

Sensor LM35 menggunakan prinsip dasar dioda, di mana ketika suhu meningkat, tegangan di dioda meningkat pada tingkat yang diketahui, dengan memperkuat perubahan tegangan secara tepat, mudah untuk menghasilkan sinyal analog yang berbanding lurus dengan suhu.

Ada dua transistor di tengah rangkaian. Yang satu memiliki area emitor sepuluh kali lipat dari yang lain. Ini berarti ia memiliki sepersepuluh dari kerapatan arus, karena arus yang sama mengalir melalui kedua transistor. Hal ini menyebabkan tegangan pada resistor R1 sebanding dengan suhu absolut, dan hampir linier pada rentang yang kita pedulikan. Bagian "hampir" diurus oleh sirkuit khusus yang meluruskan grafik tegangan versus suhu yang agak melengkung.

Penguat di bagian atas memastikan bahwa tegangan pada basis transistor kiri (Q1) sebanding dengan suhu absolut (PTAT) dengan membandingkan output dari kedua transistor.

Penguat di sebelah kanan mengubah suhu absolut (diukur dalam Kelvin) menjadi Fahrenheit atau Celcius, tergantung pada bagiannya (LM34 atau LM35). Lingkaran kecil dengan huruf "i" di dalamnya adalah rangkaian sumber arus konstan.

Kedua resistor dikalibrasi di pabrik untuk menghasilkan sensor suhu yang sangat akurat. Sirkuit terintegrasi memiliki banyak transistor di dalamnya - dua di tengah, beberapa di setiap penguat, beberapa di sumber arus konstan, dan beberapa di sirkuit kompensasi kelengkungan. Semua itu dimasukkan ke dalam kemasan mungil dengan tiga kabel

Rumus perhitungan:

Rumus umum untuk menghitung suhu dari sensor LM35:



LM35 adalah sensor suhu berdaya rendah, berbiaya rendah, dan berpresisi tinggi yang dirancang dan diproduksi oleh Texas Instruments. IC ini memberikan output tegangan yang secara linier sebanding dengan perubahan suhu.

 

Sensor LM35 cukup presisi dan konstruksinya yang kuat membuatnya cocok untuk berbagai kondisi lingkungan. Selain itu, Anda tidak memerlukan komponen eksternal untuk mengkalibrasi sirkuit ini dan memiliki akurasi tipikal Β± 0,5 Β° C pada suhu kamar dan Β± 1 Β° C pada rentang suhu -55 Β° C hingga +155 Β° C. Sensor ini memiliki tegangan operasi 4V hingga 30V dan mengkonsumsi arus 60-uA saat sedang bekerja, ini juga membuatnya sempurna untuk aplikasi bertenaga baterai.

 

Ada dua kelemahan dari sensor ini. Kerugian besar pertama dari sensor ini adalah tidak dapat mengukur suhu negatif, untuk itu Anda harus membiaskannya dengan suplai polaritas ganda. Jika proyek Anda membutuhkan pengukuran suhu negatif, Anda dapat memilih sensor LM36. Kerugian kedua dari sensor ini adalah sensor ini sangat sensitif terhadap kebisingan karena mengeluarkan data dalam format analog. Jika Anda ingin mempelajari lebih lanjut tentang sensor ini, Anda dapat melihat Lembar Data IC Sensor Suhu LM35.

 

Sensor suhu LM35 menggunakan prinsip dasar dioda untuk mengukur nilai suhu yang diketahui. Seperti yang kita ketahui dari fisika semikonduktor, saat suhu meningkat, tegangan di dioda akan meningkat dengan kecepatan yang diketahui. Dengan memperkuat perubahan tegangan secara akurat, kita dapat dengan mudah menghasilkan sinyal tegangan yang berbanding lurus dengan suhu di sekitarnya. Tangkapan layar di bawah ini menunjukkan skema internal IC sensor suhu LM35 menurut lembar data.

 

In practice, this diode that they are using to measure the temperature is not actually a PN Junction diode but its a diode-connected transistor. That is why the relationship between the forward voltage and the transistor is so linear. The temperature coefficient vs collector current graph below gives you a better understanding of the process.

 

. Berikut ini adalah karakteristik dari sensor LM35:

  • Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ΒΊC, sehingga dapat dikalibrasi langsung dalam celcius.
  • Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ΒΊC pada suhu 25 ΒΊC
  •  Memiliki jangkauan maksimal operasi suhu antara -55 ΒΊC sampai +150 ΒΊC.
  •  Bekerja pada tegangan 4 sampai 30 volt.
  •  Memiliki arus rendah yaitu kurang dari 60 Β΅A.
  •  Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ΒΊC pada udara diam.
  •  Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA.
  •  Memiliki ketidaklinieran hanya sekitar Β± ΒΌ ΒΊC.
 Sensor LM35 bekerja dengan mengubah besaran suhu menjadi besaran tegangan. Tegangan ideal yang keluar dari LM35 mempunyai perbandingan 100Β°C setara dengan 1 volt. Sensor ini mempunyai pemanasan diri (self heating) kurang dari 0,1Β°C, dapat dioperasikan dengan menggunakan power supply tunggal dan dapat dihubungkan antar muka (interface) rangkaian control.
Sensor suhu LM35 mampu melakukan pengukuran suhu dari suhu -55ΒΊC hingga +150ΒΊC dengan toleransi kesalahan pengukuran Β±0.5ΒΊC.

Dilihat dari tipenya range suhu dapat dilihat sebagai berikut :
  • LM35, LM35A -> range pengukuran temperature  -55ΒΊC hingga +150ΒΊC.
  • LM35C, LM35CA -> range pengukuran temperature -40ΒΊC hingga +110ΒΊC.
  • LM35D -> range pengukuran temperature 0ΒΊC hingga +100ΒΊC. 
Kelebihan LM 35 :
  • Rentang suhu yang jauh, antara -55 sampai +150ΒΊC
  • Low self-heating, sebesar 0.08 ΒΊC
  • Beroperasi pada tegangan 4 sampai 30 V
  • Tidak memerlukan pengkondisian sinyal
Kekurangan LM 35:
  • Membutuhkan tegangan untuk beroperasi.
Grafik akurasi LM35 terhadap suhu

Blog diagram sensor suhu




20  Sensor pH
         Sensor pH merupakan ini digunakan untuk mengukur kadar pH yang terkandung pada tanki air hidroponik. Sensor ini beroperasi pada tegangan 3.4 hingga 5 Volt dan suhu operasi 5 hingga 60 derajat celcius. Sensor pH digunakan untuk mengukur kandungan asam pada tank nutrisi air pada kebun hidroponik. 

Sensor pH meter merupakan suatu sensor yang dapat melakukan pengukuran tingkat kadar keasaman atau kebasaan yang dimiliki oleh cairan/larutan. Cara bekerja dari sensor pH air yang utama berada di bagian sensor probe dengan material terbuat dari elektroda kaca, dimana pada elektroda kaca tersebut terdapat larutan HCL yang terdapat pada bagian ujung sensor probe, sensor probe tersebit akan mengukur besaran nilai ion H3O + pada suatu larutan sehingga dapat mengetahui kadar PH pada suatu larutan/cairan[8]. Elektroda sensor pada sensor PH air terbentuk dari bahan lapisan kaca yang sensitif dengan impendasi yang kecil oleh sebab itu dapat mendapatkan hasil pembacaaan dan penilaian yang stabil dan cepat pada suhu cairan/larutan tinggi maupun rendah. Hasil dari pembacaan nilai sensor PH bisa didapatkan oleh mikrokontroler dengan menggunakan antarmuka PH 2.0 yang sudah ada pada modul sensor PH air. Sensor PH air ini sangat baik untuk digunakan dalam melakukan pembacaan kadar PH cairan dengan interval waktu yang lama.
Grafik respon sensor PH adalah : 



Sensor pH adalah sensor yang digunakan untuk mengetahui derajat keasaman. pH meter adalah alat yang digunakan untuk mengukur tingkat keasaman atau kebasaan larutan. Prinsip utama kerja pH meter adalah terletak pada sensor probe berupa elektroda kaca (glass electrode) dengan jalan mengukur jumlah ion H30+ di dalam larutan. Dalam penggunaannya, sensor pH perlu dikalibrasi berkala agar keakuratannya dapat terjaga. Beberapa produsen sensor pH pada umumnya menyertakan instrumen untuk melakukan kalibrasi secara manual. Jika sensor pH dihubungjan dengan Arduino Uno, kalibrasi dapat dilakukan melalui program antarmuka kalibrasi sensor pH (pengembangan dari library sensor pH yang sudah tersedia). Hasil kalibrasi tersebut kemudian disimpan dalam EEPROM agar dapat digunakan untuk pengukuran normal.

 Spesifikasi:

- Catu Daya 5 V
- Ukuran Modul: 43 mm x 32 mm
- Jangkauan Pengukuran: 0 - 14 pH
- Temperatur Kerja: 0Β°C - 60Β°C
- Akurasi: Β± 0.1 pH (25Β°C)
- Respon Waktu: = 1 menit
- Jenis Konektor: BNC
- Antarmuka: PH 2.0
- Gain Adjustment: Potensiometer 
- Indikator Daya: LED 

 


Prinsip kerja sensor pH
 
Prinsip kerja utama sensor pH adalah terletak pada sensor probe berupa elektroda kaca (glass elektroda) dengan jalan mengukur jumlah ion H3O+ di dalam larutan. Ujung elektroda kaca adalah lapisan kaca setebal 0,1 mm yang berbentuk bulat (bulb). Bulb ini dipasangkan dengan silinder kaca non-konduktor atau plastik memanjang, yang selanjutnya diisi dengan larutan HCL (0,1 mol/dm3 ). Di dalam larutan HCL, terendam sebuah kawat elektroda panjang berbahan perak yang pada permukaannya terbentuk senyawa setimbang AgCl. Konstantanya jumlah larutan HCl pada sistem ini membuat elektroda Ag/AgCl memiliki nilai potensial stabil.

Inti sensor pH terdapat pada permukaan bulb kaca yang memiliki kemampuan untuk bertukar ion positif (H+) dengan larutan terukur. Kaca tersusun atas molekul silicon dioksida dengan sejumlah ikatan logam alkali. Pada saat bulb kaca ini terekspos air, ikatan SiO akan terprontonasi membentuk membran tipis HSiO+ sesuai dengan reaksi berikut : SiO + H3O+ HSiO+ + H2O

Seperti pada ilustrasi di atas bahwa pada permukaan bulb terbentuk semacam lapisan β€œgel” sebagai tempat pertukaran ion H+ . Jika larutan bersifat asam, maka ion H+ akan terikat ke permukaan bulb. Hal ini menimbulkan muatan positif terakumulasi pada lapisan β€œgel”. Sedangkan jika larutan bersifat basa, maka ion H+ dari dinding bulb terlepas untuk bereaksi dengan larutan tadi. Hal ini menghasilkan muatan negative pada dinding bulb. Pertukaran ion hydronium (H+ ) yang terjadi antara permukaan bulb kaca dengan larutan sekitarnya inilah yang menjadi kunci pengukuran jumlah ion H3O+ di dalam larutan. Kesetimbangan pertukaran ion yang terjadi di antara fase dinding kaca bulb dengan larutan, menghasilkan beda potensial di antara keduanya. Edinding kaca/larutan |RT/2,303F loga(H3O+ )|........….Eq.1 Dimana R adalah konstanta molar gas (8.314 J/mol K), T untuk temperature (Kelvin), F adalah konstanta Faraday 96485.3 C/mol, 2.303 adalah angka konversi antara logaritma alami dengan umum, dan a(H3O+ ) adalah aktivitas dari hydronium (bernilai rendah jika konsentrasinya rendah). Pada temperatur 250C nilai dari RT/2.303Fmendekati angka 59.16 mV. Angka 59.16 mV ini menjadi bilangan penting karena pada suhu konstan larutan 250C, setiap perubahan 1 satuan pH,

terjadi perubahan beda potensial elektroda kaca sebesaar 59.16 mV. Perhitungan nilai aktivitas hidronium (a(H3O+ )) pada persamaan di atas memiliki rentang yang sangat lebar yakni antara 10 hingga 10-15 mol/dm3 . sehingga untuk meringkas persamaan, maka lahirlah pH dengan persamaan sebagai berikut:
Tanda negatif adalah untuk membuat sesuatu nilai pH dari berbagai larutan, kecuali larutan yang bersifat sangat ekstrim asam, menjadi bernilai positif. Seperti yang telah kita bahas diatas, bulb kaca berisi larutan HCL yang merendam sebuah elektroda perak. HCl ini memiliki pH konstan karena ia berada pada system yang terisolasi. Karena pH konstan inilah maka ia menciptakan beda potensial yang konstan pada temperature yang konstan pula.sebut saja potensial tersebut E’, maka persamaan (Eq.1) diatas bersama dengan persamaan (Eq.2) didapatkan persamaan beda potensial total dari elektroda kaca : Eelektroda kaca= E’ – RT/2.303F pH……………..Eq.3


Sensor pH In-Situ menggunakan potensial listrik untuk mengukur pH dari suatu larutan. Sensor ini bekerja dengan membandingkan potensial listrik dari suatu sistem yang peka terhadap pH dengan potensial dari suatu sistem referensi yang stabil.

 

Sistem pendeteksian menggunakan bola kaca yang peka terhadap pH dan mengubah tegangan sebanding dengan konsentrasi ion hidrogen. Elektroda pendeteksi mengukur potensial dari bola kaca tersebut. Sensor diisi dengan larutan kalium klorida (KCl) yang menghantarkan listrik antara kaca peka pH dan elektroda pendeteksi.

 

Sistem referensi terpisah dari sistem pendeteksian. Alih-alih menggunakan bola kaca peka pH, sistem referensi menggunakan sambungan referensi yang dapat diganti dan memberikan kontak listrik dengan sampel sambil melindungi sistem internal. Berbeda dengan bola kaca peka pH, sambungan referensi tidak mengubah potensial dengan perubahan pH. Elektroda referensi mengukur potensial larutan. Sistem referensi diisi dengan larutan perak/klorida perak (Ag/AgCl) yang menghantarkan listrik antara sambungan referensi dan elektroda referensi.

 

 



 

Alat membaca sinyal dari elektroda pH, elektroda referensi, dan suhu, kemudian menghitung pH menggunakan persamaan Nernst:

 

Em = Eo + (2.3RT/nF) log [H+]

 

dimana:

 

Em adalah potensial dari elektroda pH,

Eo berkaitan dengan potensial elektroda referensi,

R adalah konstanta Hukum Gas,

F adalah konstanta Faraday,

T adalah suhu dalam Kelvin,

n adalah muatan ion (+1 untuk Hidrogen), dan

[H+] adalah konsentrasi ion hidrogen dalam mol/L.

Elektroda kaca pada sensor pH bekerja berdasarkan prinsip elektrokimia yang melibatkan potensial ion hidrogen (H+) dalam larutan. Elektroda kaca pada sensor pH merupakan sel elektrokimia yang memungkinkan pengukuran potensial listrik sebagai respons terhadap perubahan tingkat pH dalam larutan. Proses ini terjadi di antarmuka antara elektroda kaca dan larutan yang diukur.


Elektroda kaca pada sensor pH memiliki lapisan khusus yang sangat peka terhadap ion hidrogen. Pada ujung elektroda kaca, terdapat larutan HCl yang berperan penting dalam membentuk potensial elektrokimia. Ketika elektroda kaca direndam dalam larutan, reaksi kimia antara HCl pada elektroda dan ion hidrogen (H+) dalam larutan menghasilkan perbedaan potensial.


Perbedaan potensial elektrokimia ini bersifat responsif terhadap konsentrasi ion hidrogen dalam larutan, yang pada gilirannya mencerminkan tingkat pH larutan. Larutan asam, dengan tingkat pH rendah, memiliki konsentrasi ion hidrogen yang tinggi, sehingga menghasilkan perbedaan potensial yang tinggi pada elektroda kaca. Sebaliknya, larutan basa, dengan tingkat pH tinggi, memiliki konsentrasi ion hidrogen yang rendah, sehingga perbedaan potensial elektrokimia akan berkurang.


Penting untuk dicatat bahwa potensial elektrokimia tidak selalu berubah secara linear seiring dengan perubahan pH. Oleh karena itu, seringkali diperlukan kalibrasi untuk mengonversi perubahan potensial tersebut menjadi nilai pH yang akurat. Proses kalibrasi melibatkan pengukuran pada larutan standar dengan pH yang diketahui untuk menghasilkan kurva kalibrasi.


Secara keseluruhan, elektroda kaca pada sensor pH berperan sebagai transduser yang mengubah perubahan karakteristik kimia (khususnya konsentrasi ion hidrogen) menjadi sinyal listrik yang dapat diukur, memberikan informasi yang berguna tentang tingkat keasaman atau kebasaan dalam larutan.


21. Sensor Kelembapan





Kelembaban merupakan salah satu hal yang bisa mempengaruhi kondisi cuaca terhadap suatu daerah. Sensor kelembaban merupakan alat pengukur untuk mendefinisikan suatu kelembaban uap air yang terkandung di dalam udara. Ada dua jenis kelembaban yang akan diukur, yaitu : 

 

1. Kelembaban Absolut

 

Kelembaban absolut menjadi sebuah bilangan yang merujuk pada hitungan gram uap air yang tertampung pada 1 meter kubik udara. 

 

2. Kelembaban Relatif

 

Kelembaban relatif merupakan bilangan untuk menunjukkan seberapa persen perbandingan antara uap air yang tersedia di dalam udara pada saat pengukuran dan volume uap air maksimal yang akan tertampung oleh udaranya. 

 

Jenis - jenis Humidity Sensor

 

1. Sensor Kapasitif (Capacitive Sensors)

 

Sensor kapasitif dirancang khusus untuk mengukur jenis kelembaban relatif karena uap yang ada di dalam atmosfer bisa merubah permivitas elektrik udara. Dalam pengukuran uap air yang menggunakan sensor kapasitif akan ditentukan oleh rumus berikut ini : 

 

β€’ T = ketentuan suhu (dalam K)

 

β€’ P = merupakan tekanan udara basah (dalam mHg)

 

β€’ Ps = berupa tekanan saturasi uap air pada temperature T (dalam mHg)

 

β€’ H = merupakan sebuah kelembaban relatif (dalam %)

 

Artinya, beberapa rumus tersebut akan menunjukkan konstanta pada elektrik dari udara basah. Sehingga kapasitansi menjadi setara dengan kelembaban relatif. Adapun mengenai ruang antara plat kapasitornya bisa diisi dengan isolator yang memiliki konstanta pada elektrik, dimana akan berubah secara signifikan sesuai dengan waktu dan tingkat kelembaban. 

 

Prinsip Kerja Sensor Kapasitif

 

Sensor kelembaban bekerja dengan memanfaatkan adanya perubahan kapasitif. Nantinya perubahan posisi bahan dielektrik akan terjadi diantara kedua keping tersebut. Pergeseran posisi pada salah satu keping dan luas keping yang akan langsung saling berhadapan, sehingga akan terjadi perubahan jarak diantara kedua keping. Jadi, sebuah sensor kelembaban film tipis bisa dibuat pada sebuah substrat silikon berupa lapisan dari SiO2 3000 A thick yang akan diletakkan pada suatu substrat n-Si dan terdapat dua material metal elektroda yang ditempatkan di lapisan SiO2 tersebut. 

 

Selanjutnya, beberapa metal tersebut akan dibuat dari berbagai bahan seperti aluminium, phosphor, chromium yang dicampur dengan polysilicon. Sehingga tingkat kerapatan pada metal elektroda berkisar 2000 hingga 5000 A. Sederhananya, elektroda tadi akan dibuat dalam bentuk pola integritas. Jadi, sensor yang terbaik akan dilapisi dengan lapisan dielektrik sehingga bisa bekerja pada rating temperature sesuai dengan kebutuhan.

 Sensor kelembapan resistif bekerja dengan memonitor perubahan resistansi atau tegangan pada elemen sensitif saat terjadi perubahan kelembapan. Elemen sensitif, biasanya terbuat dari bahan higroskopis seperti serat selulosa atau polimer, mengalami perubahan dalam respons terhadap kandungan air di sekitarnya. Ketika kelembapan meningkat, elemen sensitif menyerap molekul air, mengakibatkan perubahan resistansi atau tegangan pada sensor.


Rangkaian elektronik terkait pada sensor kemudian mengukur perubahan tersebut, dan nilai resistansi atau tegangan yang terbaca diinterpretasikan sebagai tingkat kelembapan. Proses ini memungkinkan penggunaan sensor kelembapan resistif untuk menghasilkan data yang mencerminkan kadar air dalam udara atau bahan tertentu. Kelebihan dari sensor ini termasuk respons yang cepat terhadap perubahan kelembapan, meskipun pengguna perlu memperhatikan potensi kontaminasi atau pengaruh kondisi lingkungan terhadap akurasi pengukuran.

Karakteristik Sensor Kapasitif

 

β€’ Bisa bekerja pada rating temperatur mulai dari 0Β°C hingga 50Β°C

 

β€’ Bisa bekerja pada rating kelembaban mulai dari 20% hingga 100% RH

 

β€’ Memiliki tegangan kerja AC yang mencapai 1 Vrms

 

β€’ Memiliki frekuensi kerja mulai dari 50 Hz hingga mencapai 1 Hz

 

β€’ Biasanya akan mengonsumsi daya sebesar 0,3 mW

 

β€’ Adanya perubahan temperatur dengan peningkatan 5 derajat celcius, maka kurva karakteristiknya menjadi bergeser yang berbanding terbalik dengan perubahan impedansi. 

 

Intinya, sensor kapasitif akan bekerja dengan mendeteksi seberapa besar tingkat kelembaban relatif udara yang ada disekitar sensornya. Setelah terdeteksi, nantinya sensor akan merubah frekuensi oscillator dan mengirimkan data ke mikrokontroler serta mikro slave sehingga nantinya akan dilanjutkan ke mikro master untuk menganalisa data yang diperlukan. 

 

2. Electrical Conductivity Sensors

 

Electrical Conductivity Sensors atau yang biasa disebut dengan Pope Element terdiri dari polystyrene. Pada umumnya, sensor ini akan dilakukan dengan asam sulfir untuk memperoleh karakteristik surface-resistivitas yang dibutuhkan. Tidak hanya itu, masih ada lagi material lainnya yang bisa digunakan dalam pembuatan sebuah film untuk sensor konduktivitas.

 

Material yang dimaksud berupa solidaritas, dikarenakan konduktivitas elektrik pada bahan tersebut sangat bervariasi dan bisa mempengaruhi terhadap tingkat kelembaban. Sistem kerja pada sensor ini terdiri dari film berukuran tipis yang berbahan polimer dan oksida logam diantara dua elektroda konduktif. Bagian sensornya telah dilapisi dengan logam yang memiliki pori-pori elektroda untuk memberikan perlindungan dari kontaminasi seperti kaca, keramik hingga silikon. Jadi, perubahan di dalam konstanta dielektrik sensor kelembaban kapasitifnya hampir sama dengan kelembaban relatif di lingkungan sekitarnya. 

 

3. Thermal Conductivity Sensors

 

Penggunaan thermal conductivity sensors akan memanfaatkan gas untuk mengukur tingkat kelembaban melalui sensor thermistor. Prinsip kerja pada sensor ini terdiri dari dua ruang dengan masing-masing memiliki sebuah sensor yang identik dengan konduktivitas termal. Salah satu ruangnya ditutup kemudian diisi dengan gas referensi, sedangkan ruang satunya lagi bertugas sebagai penerima gas sampel. Artinya, perbedaan konduktivitas termal dari sampel gas referensi akan didefinisikan ke dalam angka konsentrasi oleh sirkuit mikroprosesor yang terdapat pada unit elektronik.

 

 

 

 


Soil Moisture Sensor merupakan module untuk mendeteksi kelembaban tanah, yang dapat diakses menggunakan microcontroller seperti arduino.Sensor kelembaban tanah ini dapat dimanfaatkan pada sistem pertanian, perkebunan, maupun sistem hidroponik mnggunakan hidroton.

Soil Moisture Sensor dapat digunakan untuk sistem penyiraman otomatis atau untuk memantau kelembaban tanah tanaman secara offline maupun online. Sensor yang dijual pasaran mempunyai 2 module dalam paket penjualannya, yaitu sensor untuk deteksi kelembaban, dan module elektroniknya sebagai amplifier sinyal.

BAGIAN BAGIAN PIN SENSOR
Jika menggunakan pin Digital Output maka keluaran hanya bernilai 1 atau 0 dan harus inisalisasi port digital sebagai Input (pinMode(pin, INPUT)). Sedangkan jika menggunkan pin Analog Output maka keluaran yang akan muncul adalah sebauah angka diantara 0 sampai 1023 dan inisialisasi hanya perlu menggunkan analogRead(pin).

CARA KERJA SENSOR

Pada saat diberikan catudaya dan disensingkan pada tanah, maka nilai Output Analog akan berubah sesuai dengan kondisi kadar air dalam tanah.
Pada saat kondisi tanah :
  • Basah : tegangan output akan turun
  • Kering : tegangan output akan naik
Tegangan tersebut dapat dicek menggunakan voltmeter DC. Dengan pembacaan pada pin ADC pada microcontroller dengan tingkat ketelitian 10 bit, maka akan terbaca nilai dari range 0 – 1023. Sedangkan untuk Output Digital dapat diliat pada nyala led Digital output menyala atau tidak dengan mensetting nilai ambang pada potensiometer.
  • Kelembaban tanah melebihi dari nilai ambang maka led akan padam
  • Kelembaban tanah kurang dari nilai ambang maka led akan menyala

grafik sensor kwlwmbapan:
Blog diagram:




21. IC 4026


IC 4026 adalah 16-pin CMOS 7-segmen counter dari seri 4000. Jika input clock diberikan pulsa maka akan menghasilkan output dalam bentuk yang dapat ditampilkan pada layar 7-segmen. IC ini untuk menyederhanakan penggunaan dekoder desimal ke biner atau 7-segmen decoder pada rangkaian counter/pencacah, tetapi hanya terbatas digunakan untuk menampilkan (desimal) digit 0-9. Output dari 7 segmen adalah active β€˜high” sehingga dibutuhkan 7 segmen yang komon katoda (negatif).
Sedangkan tabel berikut menggambarkan output yang diberikan oleh IC saat diberikan pulsa clock :


22. IC 4511 (Dekoder BCD Ke 7 Segmen CMOS 4511)
            CD4511 adalah dekoder BCD ke 7-segmen. Artinya butuh angka dalam bentuk biner sebagai input, lalu tampilkan angka ini pada 7-segmen ditampilkan menggunakan outputnya.


                                                    4511 pinout.

CD4511 Pin Configuration

Pin no.

Pin name

Description

1,2,6,7

B,C,D,A

BCD input of the IC

3

Display test/Lamp test

To test the display LEDs

4

Blank input

To turn-off the LEDs of the display

5

Store

Store or strobe a BCD code

8

Gnd

Ground

9,10,11,12,13,14,15

e,d,c,b,a,g,f

7-segment outputs

16

Vcc

Positive supply input

3. Dasar Teori [kembali]

  • RESISTOR 

        Resistor merupakan komponen elektronika dasar yang digunakan untuk membatasi jumlah arus yang mengalir dalam satu rangkaian.Sesuai dengan namanya, resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Resistor memiliki simbol seperti gambar dibawah ini :


Simbol Resistor

      Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :


Dimana V adalah tegangan,  I adalah kuat arus, dan R adalah Hambatan.

Di dalam resistor, terdapat ketentuan untuk membaca nilai resistor yang diwakili dengan kode warna dengan ketentuan di bawah ini :



Sebagian besar resistor yang kita lihat memiliki empat pita berwarna . Oleh karena itu ada cara membacanya seperti ketentuan dibawah ini :
1. Dua pita pertama dan kedua menentukan nilai dari resistansi
2. Pita ketiga menentukan faktor pengali, yang akan memberikan nilai resistansi.
3. Dan terakhir, pita keempat menentukan nilai toleransi.

Rumus Resistor:

Seri : Rtotal = R1 + R2 + R3 + ….. + Rn

Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n

Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn

Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n

  • Dioda

    Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.Dioda memiliki simbol sebagai berikut :
Gambar Simbol Dioda

Cara Kerja Dioda

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).

A. Kondisi tanpa tegangan

        Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.

cara kerja dioda

B. Kondisi tegangan positif (Forward-bias)

    Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.

dioda tanpa tegangan

C. Kondisi tegangan negatif (Reverse-bias)

        Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.

kondisi tegangan negatif

3. Rumus

rumus

Transistor NPN

Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya. Kapasitor NPN memiliki simbol seperti gambar di bawah ini:
Simbol Transistor NPN BC547


Terdapat rumus rumus dalam mencari transistor seperti rumus di bawah ini:

Rumus dari Transitor adalah :

hFE = iC/iB

dimana, iC = perubahan arus kolektor 

iB = perubahan arus basis 

hFE = arus yang dicapai


Rumus dari Transitor adalah :

Karakteristik Input

Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.

Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.

 Karakteristik Output

Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.

Gelombang I/O Transistor


  • OP-AMP

Simbol 
 
Berfungsi sebagai penguat atau pembanding tegangan input dengan output.

 

 

Karakteristik IC OpAmp

  • Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
  • Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
  • Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
  • Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
  • Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
  • Karakteristik tidak berubah dengan suhu
                                                                           

Karakteristik IC OpAmp

  • Penguatan Tegangan Open-loop atau Av = ∞ (tak terhingga)
  • Tegangan Offset Keluaran (Output Offset Voltage) atau Voo = 0 (nol)
  • Impedansi Masukan (Input Impedance) atau Zin= ∞ (tak terhingga)
  • Impedansi Output (Output Impedance ) atau Zout = 0 (nol)
  • Lebar Pita (Bandwidth) atau BW = ∞ (tak terhingga)
  • Karakteristik tidak berubah dengan suhu

Inverting Amplifier


 Rumus:

NonInverting

 Rumus:

Komparator

Rumus:

Adder

Rumus:

Bentuk Gelombang

  • Gerbang NOT (IC 7404)

 


Gerbang NOT atau disebut juga "NOT GATE" atau Inverter (Gerbang Pembalik) adalah jenis gerbang logika yang hanya memiliki satu input (Masukan) dan satu output (keluaran). Dikatakan Inverter (gerbang pembalik) karena gerbang ini akan menghasilkan nilai ouput yang berlawanan dengan nilai inputnya . Untuk lebih jelasnya perhatikan simbol dan tabel kebenaran gerbang NOT berikut.



Pada gerbang logika NOT, simbol yang menandakan operasi gerbang logika NOT adalah tanda minus (-) diatas variabel, perhatikan gambar diatas.

Perhatikan tabel kebenaran gerbang NOT. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang NOT akan menghasilkan output (keluaran) logika 1 bila variabel input (masukan) bernilai logika 0" sebalikanya "Gerbang NOT akan menghasilkan keluaran logika 0 bila input (masukan) bernilai logika 1"

  • Decoder (IC 7447)

    IC BCD 7447 merupakan IC yang bertujuan mengubah data BCD (Binary Coded Decimal) menjadi suatu data keluaran untuk seven segment. IC 7447 yang bekerja pada tegangan 5V ini khusus untuk menyalakan seven segment dengan konfigurasi common anode. Sedangkan untuk menyalakan tampilan seven segment yang bekerja pada konfigurasi common cathode menggunakan IC BCD 7448. 

    IC ini sangat membantu untuk meringkas masukan seven segmen dengan jumlah 7 pin, sedangkan jika menggunakan BCD cukup dengan 4 bit masukan. IC BCD bisa juga disebut dengan driver seven segment. Berikut konfigurasi Pin IC 7447.

Konfigurasi Pin Decoder:

a. Pin Input IC BCD, memiliki fungsi sebagai masukan IC BCD yang terdiri dari 4 Pin, nama     pin masukan BCD dilangkan dengan huruf kapital yaitu A, B, C  dan D. Pin input berkeja    dengan logika High=1.

b. Pin Ouput IC BCD, memiliki fungsi untuk mengaktifkan seven segmen sesuai data yang    diolah dari pin input. Pin output berjumlah 7 pin yang namanya dilambangkan dengan    aljabar huruf kecil yaitu, b, c, d, e, f dan g. Pin Output bekerja dengan logika low=0. Karena itulah IC 7447 digunakan untuk seven segment common anode.

c. Pin LT (Lamp Test) memiliki fungsi untuk mengaktifkan semua output menjadi aktif low,        sehingga semua led pada seven segmen menyala dan menampilkan angka 8. Pin LT akan aktif jika diberi logika low. Pin ini juga digunakan untuk mengetes kondisi LED pada seven segment.

d. Pin RBI (Ripple Blanking Input) memiliki fungsi untuk menahan data input (disable input), pin RBI akan aktif jika diberi logika low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.

e. Pin RBO (Ripple blanking Output) memiliki fungsi untuk menahan data output (disable output), pin RBO ini akan aktif jika diberikan logika Low. Sehingga seluruh pin output akan berlogika High, dan seven segment tidak aktif.

Pada aplikasi IC dekoder 7447, ketiga pin (LT, RBI dan RBO) harus diberi logika HIGH=1 agar tidak aktif. Baik IC 7447 atau 7448 pada bagian output perlu dipasang resistor untuk membatasi arus yang keluar sehingga led pada seven segment bekerja secara optimal. Berikut ini rangkaian IC dekoder 7448 untuk konfigurasi seven segment common cathode.

  • Encoder 74147


    IC 74147 adalah IC encoder digital yang mengkodekan 9 jalur input menjadi 4 jalur output. Ini juga dikenal sebagai encoder prioritas Desimal ke BCD. Istilah encoder prioritas digunakan karena menyediakan pengkodean untuk jalur data urutan tertinggi sebagai prioritas pertama. Itu dibuat menggunakan teknologi Transistor-Transistor Logic (TTL). Ini adalah IC encoder 10 hingga 4. Pada artikel ini, kita akan melihat Diagram Pin IC 74147, Diagram Sirkuit Internal IC 74147, dan tabel Truth atau tabel fungsi IC 74147.

Here, you can see the truth table of IC 74147



  • 7 Segment Anoda   

    Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.

    Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.

    Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk  dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.

Tabel Pengaktifan Seven Segment Display


  • Light Emitting Code (LED)
  Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.

    Bentuk LED mirip dengan sebuah bohlam (bola lampu) yang kecil dan dapat dipasangkan dengan mudah ke dalam berbagai perangkat elektronika. Berbeda dengan Lampu Pijar, LED tidak memerlukan pembakaran filamen sehingga tidak menimbulkan panas dalam menghasilkan cahaya.  Oleh karena itu, saat ini LED (Light Emitting Diode) yang bentuknya kecil telah banyak digunakan sebagai lampu penerang dalam LCD TV yang mengganti lampu tube.

Simbol dan Bentuk LED (Light Emitting Diode)
Bentuk dan Simbol LED (Light Emitting Diode)


Cara Kerja LED (Light Emitting Diode)

Seperti dikatakan sebelumnya, LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.

LED terdiri dari sebuah chip semikonduktor yang di doping sehingga menciptakan junction P dan N. Yang dimaksud dengan proses doping dalam semikonduktor adalah proses untuk menambahkan ketidakmurnian (impurity) pada semikonduktor yang murni sehingga menghasilkan karakteristik kelistrikan yang diinginkan. Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).

Cara kerja LED (Light Emitting Diode)

LED atau Light Emitting Diode yang memancarkan cahaya ketika dialiri tegangan maju ini juga dapat digolongkan sebagai Transduser yang dapat mengubah energi listrik menjadi energi cahaya.

  • Logic State



    Gerbang logika atau logic State adalah suatu entitas dalam elektronika dan matematika Boolean yang mengubah satu atau beberapa masukan logik menjadi sebuah sinyal keluaran logik. Gerbang Logika beroperasi berdasarkan sistem bilangan biner yaitu bilangan yang hanya memiliki 2 kode simbol yakni 0 dan 1 dengan menggunakan Teori Aljabar Boolean.

    Status logika Pengertian logis, benar atau salah, dari sinyal biner yang diberikan. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt. Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan.

  • Motor DC

    

    Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), ArmatureWinding (Kumparan Jangkar), Commutator (Komutator)dan Brushes (kuas/sikat arang).

    Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti



Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.

  • Voltmeter
Volt meter DC merupakan alat ukur yang berfungsi untuk mengetahui beda potensial tegangan DC antara 2 titik pada suatu beban listrik atau rangkaian elektronika.


  • Ground
Ground Berfungsi sebagai untuk meniadakan beda potensial dengan mengalirkan arus sisa dari kebocoran tegangan atau arus pada rangkaian

  • Baterai

Baterai (Battery) adalah sebuah alat yang dapat merubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik. Hampir semua perangkat elektronik yang portabel seperti Handphone, Laptop, Senter, ataupun Remote Control menggunakan Baterai sebagai sumber listriknya. Dengan adanya Baterai, kita tidak perlu menyambungkan kabel listrik untuk dapat mengaktifkan perangkat elektronik kita sehingga dapat dengan mudah dibawa kemana-mana. Dalam kehidupan kita sehari-hari, kita dapat menemui dua jenis Baterai yaitu Baterai yang hanya dapat dipakai sekali saja (Single Use) dan Baterai yang dapat di isi ulang (Rechargeable). Baterai simbol seperti gambar di bawah ini:

Gambar Simbol Baterai

  • Power Supply
    Power supply atau pencatu daya adalah sebuah alat elektronik yang berfungsi memberikan tegangan dan arus listrik pada komponen-komponen lainnya. Pada dasarnya power supply membutuhkan sumber listrik yang kemudian diubah menjadi sumber daya yang dibutuhkan oleh berbagai perangkat elektronik lainnya. Arus listrik yang disalurkan oleh power supply ini adalah jenis arus bolak-balik (AC). Namun karena kelebihan dari power supply ini, maka alat ini juga dapat mengubah arus bolak-balik (AC) menjadi arus searah (DC). Power supply memiliki simbol sebagai berikut :
Gambar simbol power supply
  • Sensor Sentuh (TOUCH SENSOR)
(Gambar 17. Touch sensor)
    Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya. Sensor Sentuh ini dikenal juga sebagai Sensor Taktil (Tactile Sensor). Seiring dengan perkembangan teknologi, sensor sentuh ini semakin banyak digunakan dan telah menggeser peranan sakelar mekanik pada perangkat-perangkat elektronik.
    

JENIS-JENIS SENSOR SENTUH

Berdasarkan fungsinya, Sensor Sentuh dapat dibedakan menjadi dua jenis utama yaitu Sensor Kapasitif dan Sensor Resistif. Sensor Kapasitif atau Capacitive Sensor bekerja dengan mengukur kapasitansi sedangkan sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya.

Pengertian SENSOR SENTUH dan jenis-jenisnya (KAPASITIF DAN RESISTIF)
(Gambar 18. jenis touch sensor)

Sensor Kapasitif

    Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.

    Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.

    Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.

Sensor Resistif

    Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.

    Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).

    Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.

        Dalam keadaan IDLE output yang dihasilkan adalah LOW (konsumsi daya sangat kecil) sedangkan saat ada jari yang menyentuh modul ini output yang dihasilkan adalah HIGH. Jika tidak ada aktifitas lebih dari 12 detik maka modul otomatis akan kembali ke mode IDLE (hemat daya).

        Modul dapat dipasang di belakang permukaan plastik, kaca dan bahan non-logam lainnya untuk menutupi permukaan sensor. Selain itu, jika kita dapat mengatur posisi yang tepat untuk sentuhan, kita juga dapat menyembunyikannya di dalam dinding, meja dan bagian tombol tersembunyi lainnya.
Ketika jari menyentuh bagian sensor, modul menghasilkan sinyal high.
a. Arus Output Pin Sink (@ VCC 3V, VOL 0.6V): 8mA
b. Arus Output pin pull-up (@ VCC=3V, VOH=2.4V): 4mA
c. Waktu respon (low power mode): max 220ms
1. Dalam keadaan normal, modul menghasilkan sinyal low (hemat daya).
d. Waktu respon (touch mode): max 60ms

Cara kerja:
4. Dilengkapi 4 lobang baut untuk memudahkan pemasangan
3. Jika tidak disentuh lagi selama 12 detik kembali ke mode hemat energi.

Kelebihan:
- Konsumsi daya yang rendah
- Dapat menggantikan fungsi saklar tradisional
- Bisa menerima tegangan dari 2 ~ 5.5V D
Rumus Tegangan sentuh maksimal  

𝐸𝑆 = πΌπ‘˜( π‘…π‘˜ + 1.5 πœŒπ‘ )

Ket:    πΌπ‘˜ = Arus fibrilasi
          π‘…π‘˜ = Nilai tahanan pada badan manusia 
          πœŒπ‘  = Tahanan Jenis tanah 



Water Sensor
        Water sensor adalah controller yang bisa mendeteksi volume air, tinggi air, serta kualitas air di dalam tangki, sungai, danau, dan sejenisnya dengan akurat dan mudah. Sensor ini merupakan perangkat yang bisa mematikan atau mengobarkan pompa air secara otomatis andai air mulai berakhir atau sudah nyaris penuh.

    Jumlah Pin pada Sensor ini berjumlah 3 Yaitu :

    1. Pin Negatif (-)
    2. Pin Positif (+)
    3. Pin Data (S)
Sensor pH 

        pH merupakan suatu parameter yang digunakan untuk menyatakan tingkat
keasaman atau basa yang dimiliki oleh suatu zat, larutan atau benda. Kadar pH
diukur pada skala 0 sampai 14.

       Dapat dilihat pada gambar diatas skala pH netral memiliki sifat basa sedangkan
nilai pH netral memiliki nilai pH , bila nilai pH >7 menunjukan zat tersebut
memiliki sifat basa sedangkan nilai pH < 7 menunjukan derajat kebasaan
tertinggi. 

Spesifikasi Sensor Asam 
       Pada perencanaa sensor pH yang akan digunakan adalah jenis Elektroda
(SKU : SEN0161) dari DF Robot dengan spesifikasi sebagai berikut : 
ο€­ Daya Modul : 5V
ο€­ Ukuran Modul : 43mm x 32mm
ο€­ Jarak pengukuran : 0-14.0 pH
ο€­ Pengukuran Suhu : 0-60 ΒΊC
ο€­ Akurasi : Β± 0.1pH (25ΒΊC)
ο€­ Waktu tanggap : < 1 menit
ο€­ Ph Sensor dengan Kabel BNC
ο€­ Antarmuka pH 2.0 3 pin
ο€­ LED Indikator Data


Prinsip Kerja Sensor Ph 

    Prinsip kerja utama sensor pH meter terletak pada probe elektroda kaca (glass electrode) dengan jalan mengukur jumlah ion H3O+ di dalam larutan. Ujung elektroda kaca setebal 0,1 mm yang berbentuk bulat (bulb). Bulb ini dipasangkan dengan silinder kaca non-konduktor atau plastic memanjang diisi dengan larutan HCL. Didalam larutan HCL, terendam sebuah kawat elektrode panjang berbahan perak yang pada permukaannya terbentuk senyawa setimbang AgCL,kostantannya jumlah larutan HCL pada sistem ini membuat electrode Ag/AgCL memiliki nilai potemsial stabil.




        Inti sensor pH pada permukaan bulbkaca yang memiliki kemampuan untuk
bertukar ion positif (H+) dengan larutan terukur. Kaca tersusun atas molekul
silicon dioksida dengan sejumlah ikatan logam alkali. Pada saat bulb kaca ini
terekspos air, ikatan SiO akan berprotonasi membentuk tipis HsiO+ sesuai dengan
reaksi tersebut. 

SENSOR SUHU

Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor. LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain, LM35 juga mempunyai keluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kendali khusus serta tidak memerlukan penyetelan lanjutan.

. Berikut ini adalah karakteristik dari sensor LM35:

  • Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ΒΊC, sehingga dapat dikalibrasi langsung dalam celcius.
  • Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ΒΊC pada suhu 25 ΒΊC
  •  Memiliki jangkauan maksimal operasi suhu antara -55 ΒΊC sampai +150 ΒΊC.
  •  Bekerja pada tegangan 4 sampai 30 volt.
  •  Memiliki arus rendah yaitu kurang dari 60 Β΅A.
  •  Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ΒΊC pada udara diam.
  •  Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA.
  •  Memiliki ketidaklinieran hanya sekitar Β± ΒΌ ΒΊC.

        Sensor suhu ini terkalibrasi dalam satuan celcius dan mampu membaca nilai suhu dari 0˚C100˚C dan memiliki paraeter bahwa setiap kenaikan 1˚C tegangan keluaran naik sebesar 10mV dengan batas maksimal keluaran sensor adalah 1,5V pada suhu 150˚C. Pada perancangan menggunakan mikrokontroler ATmega8535, ADC yang digunakan adalah 10 bit, artinya data yang dihasilkan dari konversi adalah 0-1023. Untuk mengeluarkan output ADC dari mikrokontroler menggnakan rumus sebagai berikut : Hasil konversi ADC = (Vin*1024)/Vref Hasil output sensor kemudian akan diolah oleh mikrokontroler ATmega8535 yang kemudian nilainya akan ditampilkan pada layar lcd. Pada perancangan kakikakinya, kaki 1 terhubung power (0-5V), pin 2 sebagai output sensor yang akan terhubung dengan mikrokontroller ATmega8535, sedangkan pin 3 terhubung dengan ground.
    
                                            

Spesifikasi LM35 :

Β·         Dikalibrasi Langsung dalam Celcius (Celcius)

Β·         Faktor Skala Linear + 10-mV / Β° C

Β·         0,5 Β° C Pastikan Akurasi (pada 25 Β° C)

Β·         Dinilai untuk Rentang Penuh βˆ’55 Β° C hingga 150 Β° C

Β·         Cocok untuk Aplikasi Jarak Jauh

Β·         Biaya Rendah Karena Pemangkasan Tingkat Wafer

Β·         Beroperasi Dari 4 V hingga 30 V

Β·         Pembuangan Arus Kurang dari 60-ΞΌA

Β·         Pemanasan Mandiri Rendah, 0,08 Β° C di Udara Diam

Β·         Hanya Non-Linearitas Β± ΒΌ Β° C Tipikal

Β·         Output Impedansi Rendah, 0,1 Ξ© untuk Beban 1-mA 

Cara Kerja Sensor Suhu LM35 
Dalam praktiknya proses antarmuka sensor LM35 dapat dikatakan sangat mudah. Pada IC sensor LM35 ini terdapat tiga buah pin kaki yakni Vs, Vout dan pin ground. Dalam pengoperasiannya pin Vs dihubungkan dengan tegangan sumber sebesar antara 4 – 20 volt sementara pin Ground dihubungkan dengan ground dan pin Vout merupakan keluaran yang akan mengalirkan tegangan yang besarnya akan sesuai dengan suhu yang diterimanya dari sekitar.

Prinsip kerja alat pengukur suhu ini, adalah sensor suhu difungsikan untuk mengubah besaran suhu menjadi tegangan, dengan kata lain panas yang ditangkap oleh LM35 sebagai sensor suhu akan diubah menjadi tegangan.

Blok Diagram LM35
Source:

Diagram sirkuit ditunjukkan di atas. Secara singkat, ada dua transistor di tengah gambar. Yang satu memiliki sepuluh kali luas emitor yang lain. Ini berarti ia memiliki sepersepuluh dari kerapatan arus, karena arus yang sama mengalir melalui kedua transistor. Ini menyebabkan tegangan melintasi resistor R1 yang sebanding dengan suhu absolut, dan hampir linier melintasi rentang yang kita pedulikan. Bagian "hampir" ditangani oleh sirkuit khusus yang meluruskan grafik tegangan versus suhu yang sedikit melengkung.

Penguat di bagian atas memastikan bahwa tegangan di dasar transistor kiri (Q1) sebanding dengan suhu absolut (PTAT) dengan membandingkan keluaran kedua transistor. Amplifier di sebelah kanan mengubah suhu absolut (diukur dalam Kelvin) menjadi Fahrenheit atau Celsius, tergantung pada bagiannya (LM34 atau LM35). Lingkaran kecil dengan "i" di dalamnya adalah rangkaian sumber arus konstan. Kedua resistor dikalibrasi di pabrik untuk menghasilkan sensor suhu yang sangat akurat.     
Dilihat dari tipenya range suhu dapat dilihat sebagai berikut :
  • LM35, LM35A -> range pengukuran temperature  -55ΒΊC hingga +150ΒΊC.
  • LM35C, LM35CA -> range pengukuran temperature -40ΒΊC hingga +110ΒΊC.
  • LM35D -> range pengukuran temperature 0ΒΊC hingga +100ΒΊC. 
Kelebihan LM 35 :
  • Rentang suhu yang jauh, antara -55 sampai +150ΒΊC
  • Low self-heating, sebesar 0.08 ΒΊC
  • Beroperasi pada tegangan 4 sampai 30 V
  • Tidak memerlukan pengkondisian sinyal
Kekurangan LM 35:
  • Membutuhkan tegangan untuk beroperasi.
grafik akurasi lm35 terhadap suhu:

A. Prosedur Percobaan

  • Siapkan komponen-komponen yang diperlukan
  • Letakkan komponen tersebut, seperti gambar rangkaian
  • Rangkai komponen tersebut
  • Jalankan simulasinya


1. Sensor Dissolved Oxygen (DO)

Fungsi: Mengukur kadar oksigen terlarut dalam air.

  • Prinsip Kerja: Sensor DO bekerja berdasarkan prinsip elektrokimia atau optik. Saat oksigen terlarut bersentuhan dengan membran sensor, terjadi reaksi kimia atau perubahan intensitas cahaya (untuk tipe optik), menghasilkan sinyal listrik.
  • Aksi Kendali:
    • Jika kadar oksigen terlalu rendah (misalnya <3 mg/L), sistem akan mengaktifkan aerator atau pompa oksigen.
    • Jika terlalu tinggi, aerator akan dimatikan untuk menghemat energi.

2. Sensor Suhu

Fungsi: Memantau suhu air limbah.

  • Prinsip Kerja: Sensor seperti LM35 mendeteksi perubahan suhu dan mengubahnya menjadi tegangan proporsional.
  • Aksi Kendali:
    • Jika suhu terlalu tinggi (misalnya >40Β°C), sistem akan menambahkan air dingin atau memperlambat proses reaksi yang menghasilkan panas.
    • Jika suhu terlalu rendah, pemanas dapat diaktifkan (jika diperlukan).

3. Sensor pH

Fungsi: Mengukur tingkat keasaman atau kebasaan air limbah.

  • Prinsip Kerja: Elektroda pH mendeteksi ion hidrogen (H+) di air, menghasilkan tegangan proporsional dengan nilai pH.
  • Aksi Kendali:
    • Jika pH terlalu rendah (<6), sistem akan menambahkan larutan basa seperti NaOH.
    • Jika pH terlalu tinggi (>9), larutan asam seperti Hβ‚‚SOβ‚„ ditambahkan.

4. Sensor Gas

Fungsi: Mendeteksi gas beracun atau mudah terbakar seperti amonia (NH₃), hidrogen sulfida (Hβ‚‚S), atau metana (CHβ‚„).

  • Prinsip Kerja: Sensor semikonduktor (seperti MQ-135) mengukur perubahan resistansi bahan sensitif saat terkena gas tertentu, menghasilkan sinyal tegangan.
  • Aksi Kendali:
    • Jika konsentrasi gas seperti Hβ‚‚S atau NH₃ melebihi ambang batas (misalnya >10 ppm), sistem akan mengaktifkan ventilasi atau alarm peringatan.

5. Sensor TSS

Fungsi: Mengukur tingkat kekeruhan air untuk menentukan jumlah partikel tersuspensi.

  • Prinsip Kerja: Sensor menggunakan LED dan fotodetektor untuk mengukur intensitas cahaya yang tersebar oleh partikel di air. Semakin banyak partikel, semakin tinggi tingkat kekeruhan.
  • Aksi Kendali:
    • Jika kekeruhan tinggi (>50 NTU), sistem akan mengaktifkan filter atau proses sedimentasi tambahan.

6. Sensor Total Dissolved Solids (TDS)

Fungsi: Mengukur jumlah padatan terlarut dalam air, seperti garam dan mineral.

  • Prinsip Kerja: Sensor TDS menghitung konduktivitas listrik air dan mengonversinya menjadi konsentrasi TDS dalam ppm (parts per million).
  • Aksi Kendali:
    • Jika TDS terlalu tinggi (>500 ppm), air limbah akan diarahkan ke unit pengolahan tambahan, seperti reverse osmosis atau ion exchange.

7. Sensor Pelampung (Float Switch)

  • Prinsip Kerja:
    • Sensor water level dipasang di tangki limbah. Sensor ini memantau ketinggian air secara terus-menerus dan mengirimkan data ke sistem kontrol.
  • Pada tangki Penampungan Limbah Mengontrol level air untuk mencegah meluapnya cairan limbah berbahaya.



Video anilisis limbah pada industri kimia


5. Download file [kembali]

Rangkaian proteus Klik disini
Video percobaan Klik disini
DataSheet Touch Sensor Klik Disini  
Datasheet Water Sensor klik disini 
Datasheet PH Sensor Klik disini 
Datasheet Lm35 Sensor Klik disini
DataSheet Resistor 10k  Klik disini 
DataSheet Dioda Klik disini
DataSheet Motor DC Klik disini 
DataSheet Relay 12V Klik Disini
DataSheet Resistor 10k  Klik disini 
DataSheet Dioda Klik disini
Datasheet Switch klik disini
Datasheet Seven Segment klik disini
Datasheet Potensiometer Klik disini
Datasheet LED klik disini
Datasheet Baterai klik disini
Datasheet 7432 (gerbang OR) klik disini
Download Datasheet Opamp [klik]
Datasheet IC 7447 Klik d]isini
Datasheet IC 555 Klik disini
Datasheet IC 4026 Klik disini
Datasheet IC 7482 Klik disini
Datasheet IC 4511 Klik disini
Library Touch Sensor  Klik Disini
Library water Sensor Klik disini
Library ph Sensor Klik disini

[menuju awal]

 

Tidak ada komentar:

Posting Komentar

MEMAHAMI ETIKA DI ERA DIGITAL

Menyelami Dunia Digital dengan Bertanggung Jawab: Memahami Etika Berkomunikasi di Era Digital (Lebih Detail) Memasuki Era Digital yang Pen...